Articulation | αi | di | θi | ri |
---|---|---|---|---|
1 | &s; | r1 | ||
2 | 90° | q2 | ||
3 | d3 | q3 | ||
4 | 90° | d4 | q4 | r4 |
5 | 90° | q5 | ||
6 | 90° | d6 | q6 | r6 |
Articulation | αi | di | θi | ri |
---|---|---|---|---|
1 | q1 | 166,3 | ||
2 | 90° | q2 | ||
3 | 221,33 | q3 | ||
4 | 90° | 32,5 | q4 | 235/td> |
5 | 90° | q5 | ||
6 | 90° | 9,25 | q6 | 47,7 |
$^0T_1=\begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & r_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ | $^1T_2=\begin{bmatrix} c_2 & -s_2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_2 & c_2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ | $^2T_3=\begin{bmatrix} c_3 & -s_3 & 0 & d_3 \\ s_3 & c_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ |
$^3T_4=\begin{bmatrix} c_4 & -s_4 & 0 & d_4 \\ 0 & 0 & -1 & -r_4 \\ s_4 & c_4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ | $^4T_5=\begin{bmatrix} c_5 & -s_5 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_5 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ | $^5T_6=\begin{bmatrix} c_6 & -s_6 & 0 & d_6 \\ 0 & 0 & -1 & -r_6 \\ s_6 & c_6 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\\$ |
Articulation | $\alpha_i$ | $d_i$ | $\theta_i$ | $r_i$ |
---|---|---|---|---|
1 | 0 | 0 | $\theta_1$ | 0 |
2 | $\pi/2$ | 0 | $\theta_2$ | 0 |
3 | 0 | $D_3$ | $\theta_3$ | 0 |
4 | $-\pi/2$ | 0 | $\theta_4$ | $R_4$ |
5 | $\pi/2$ | 0 | $\theta_5$ | 0 |
6 | $-\pi/2$ | 0 | $\theta_6$ | 0 |
$C_{11}=+\begin{vmatrix} 0 & 0 \\ 2 & 2 \end{vmatrix}=0\times 2-0\times 2=0$ | $C_{12}=-\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix}=-(1\times 2-0\times 1)=-2$ | $C_{13}=+\begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix}=1\times 2-0\times 1=2$ |
$C_{21}=-\begin{vmatrix} 3 & 2 \\ 2 & 2 \end{vmatrix}=-(3\times 2-2\times 2)=-2$ | $C_{22}=+\begin{vmatrix} 1 & 2 \\ 1 & 2 \end{vmatrix}=1\times 2-1\times 2=0$ | $C_{23}=-\begin{vmatrix} 1 & 3 \\ 1 & 2 \end{vmatrix}=-(1\times 2-3\times 1)=1$ |
$C_{31}=+\begin{vmatrix} 3 & 2 \\ 0 & 0 \end{vmatrix}=3\times 0-2\times 0=0$ | $C_{32}=-\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix}=-(1\times 0-2\times 1)=2$ | $C_{33}=+\begin{vmatrix} 1 & 3 \\ 1 & 0 \end{vmatrix}=1\times 0-3\times 1=-3$ |